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Abstract

Exertional heat stroke (EHS) remains a persistent threat for individuals working or playing in the heat, including athletes and mili-
tary and emergency service personnel. However, influence of biological sex and/or body mass index (BMI) on the risk of EHS
remain poorly understood. The purpose of this study was to retrospectively assess the influence of sex and BMI on risk of EHS
in the active-duty US Army. We analyzed data from 2016 to 2021, using a matched case-control approach, where each individual
with a diagnosis of EHS was matched to five controls based on calendar time, unit ID, and job category, to capture control indi-
viduals who were matched to EHS events by location, time, and activity. We used a multivariate logistic regression model mutu-
ally adjusted for sex, BMI, and age to compare 745 (n = 61 F) individuals (26 £7 yr) with a diagnosed EHS to 4,290 (n = 384 F)
case controls (25+5 yr). Group average BMI were similar: 26.6+3.1 (EHS) and 26.5+3.6 kg/m2 (CON). BMI was significantly (P <
0.0001) associated with higher risk of EHS with a 3% increase in risk of EHS for every unit increase in BMI. Notably, sex was not
associated with any difference in risk for EHS (P = 0.54). These data suggest that young healthy people with higher BMI have

significantly higher risk of EHS, but, contrary to what some have proposed, this risk was not higher in young women.

exercise; heat illness; military; thermoregulation; women

INTRODUCTION

Exertional heat stroke (EHS) is a potentially fatal condition
that affects individuals in many domains, including the mili-
tary, athletes, and emergency service personnel. A recent esti-
mate suggests that ~500 US military personnel are affected
by EHS each year (1). Factors that put individuals at an
increased risk for EHS have been long discussed and aggre-
gated by governing bodies (2, 3). Body mass index (BMI) is a
population-based index that is used to approximate body size
by providing a ratio between body height and weight.
Although not indicative of body composition, BMI is often
used as a measure to infer health risk on a population basis. It
is well understood that older adults are at an increased risk
for passive heat stroke, often attributed to blunted heat dissi-
pation capacity (4, 5) but there has been some debate on the
influence of age on EHS risk, with investigations finding
younger individuals with higher risk during exercise heat
stress (6).

From a biophysical perspective, objects (including people
and animals) with larger size have lower surface area-to-

mass ratio (SA:mass). Metabolic heat is generated based on
body mass (for example, contracting skeletal muscle mass
during weight-bearing exercise) and is dissipated based on
body surface area (BSA, via skin blood flow, sweating, etc.).
Thus, all else being equal, a lower BSA-to-mass ratio makes it
more difficult to dissipate metabolically generated body heat
in most circumstances. A study of Marine Corps recruits at
Parris Island in the late 1980s and early 1990s demonstrated
that higher BMI was associated with a significantly increased
risk of exertional heat illness (7). Although BMI itself does
not quantify body composition or fitness status, for the gen-
eral population factors related to body size, composition,
and fitness may impact the ability of the body to dissipate
heat in an exercise and heat stress scenario (8). Average BMI
has increased substantially in both the general population
and in the US military in the decades since the Parris Island
study (9-12), and it is not clear how this has affected individ-
ual risk of exertional heat illness (EHI) or exertional heat
stroke (EHS), particularly in a military cohort.

Risk for EHI/EHS has often been suggested to be elevated
in women (13); however, the physiological basis for that
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Table 1. Demographics and measurement characteristics for EHS and Controls included in the analysis

EHS n = 745 (61 Women)

Controls n = 4,290 (384 Women)

Age, yr 26 +7 [17-47] 25+5[17-58]
BMI (kg:m ) 26.6+3.1[15.4-39.9] 26.5+3.6[14.0-43.4]
Average time since last weigh-in, days 78 [0-180] 86 [0-180]

Data presented are means * SD and [range]. BMI, body mass index; EHS, exertional heat stroke.

increased risk has not been clear. More recent evidence sug-
gests that women do not appear to be at an increased risk for
developing EHS relative to their male counterparts (6, 14).
The purpose of the present study, therefore, was to use a ret-
rospective analysis of population-level data (US Army) to
assess the influence of BMI and biological sex on risk for
developing EHS. A secondary purpose was to evaluate
whether increasing age (within this young group of Soldiers)
altered risk of EHS.

METHODS

We conducted a population-level, retrospective, matched
case-control analysis of information related to heat illness,
seXx, body size, and body composition in the US Army using
the Soldier Performance Health and Readiness (SPHERE)
Database at the US Army Research Institute of Environmental
Medicine (USARIEM). The USARIEM SPHERE is a population-
level data repository composed of existing Army-wide medi-
cal, administrative, and performance databases. Medical re-
cord data in the form of International Statistical Classification
of Diseases 10th Revision Codes were extracted from the MHS
Data Repository (MDR). The MDR database is a comprehen-
sive database for all medical encounter data where a soldier
was treated in a military treatment facility or where Tri-care
insurance was used. Cases identified as having any ICD-10
codes associated with EHS (T67.02XA, T67.02XD, T67.02XS)
were risk set-matched with replacement to five controls based
on calendar time, unit ID, and military occupational specialty
(MOS = job category) to capture control individuals who were
at the same location at the same time and conducting sim-
ilar activities as the EHS cases. This investigation was con-
ducted using deidentified data, thus does not constitute
human subjects research per the US Army Research
Institute of Environmental Medicine Human Research
Protection Program (exempt from IRB review).

Statistical Analysis

We used conditional logistic regression models to evaluate
the relationship between BMI and EHS risk in the matched
population. Within the analysis, we used the closest BMI mea-
surement to the EHS event for the cases and to the match
date for the controls. Those who did not have height and
weight measurement within 180 days of the index date were
excluded from further analysis. We considered additional
covariates for the final models including sex, age, race, and
rank. In addition, we considered interaction terms between
covariates to test for effect modification. Akaike’s information
criterion (AIC) was used as a measurement of model good-
ness-of-fit to select the best-fit model. With using this method,
the final model selected was the model mutually adjusting for
sex, age, and BMI. Race and rank did not improve the fit of

the models so were excluded from the final model. Analyses
were conducted with SAS software (v 9.4; SAS Institute) and R
statistical software (v 4.2.0; R Development Core Team).

RESULTS

In the US Army from 2016 to 2021, 745 soldiers (n = 61
women) collapsed during activities in the heat and were sub-
sequently diagnosed with EHS. Table 1 shows a demographic
summary of the soldiers included in the present analysis. As
an important note, all soldiers included in this analysis met
the physical and health requirements for entry into the
Army. Whereas group-average BMI was in the normal to
overweight range (>24 and <28), we found a statistically sig-
nificant relationship between BMI and risk of developing
EHS. In particular, each unit increase in BMI was associated
with a statistically significant ~3% increase in risk for devel-
oping EHS. There were no differences between groups for
age or BMI.

As shown in Fig. 1, increasing BMI was associated with sig-
nificantly increased risk of EHS (P < 0.001), whereas there
was no influence of biological sex (men vs. women) on EHS
risk. Interestingly, despite a relatively young population,
increasing age was associated with decreased risk of EHS. In
addition, during model selection, there was a significant
interaction between BMI and age (P = 0.02), indicating that
the effects of increasing BMI on EHS were worse in younger
individuals. We note that the best-fit model did not include
this interaction and results are reported for the model with-
out the interaction term.

Variable N Odds ratio P
i
BMI 5035 1 1.03 (1.01, 1.06) 0.01
|
h
Sex 445 [ ] Reference
|
i
M 4590 |} L | | 1.03(0.78, 1.38) 0.86
|
|
Age 5035 L] . 0.96 (0.94,0.97)  <0.001
h

08 09 | 14 12 13

Figure 1. Forest plot of factors associated with EHS risk. BMI is body mass
index. Data from n = 5,035 (n = 445 women) analyzed using a logistic
regression. EHS, exertional heat stroke.
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Figure 2 shows the relationship between BMI and proba-
bility of EHS in our group of Soldiers, showing the increased
risk with increasing BMI. Also seen in Fig. 2 are density plots
of EHS (top of graph) and control (bottom of graph) individu-
als from the group. Although there were no differences
between the mean BMI between groups (shown in Table 1),
the distribution of BMI was skewed toward higher values in
the EHS group (Fig. 3).

DISCUSSION

The major new findings of the present study were that
increasing BMI was significantly associated with increased
risk for EHS across a group of 7,650 male and female Soldiers
in the US Army. Specifically, we found a 3% increase in risk
for every unit increase in BMI, based on the odds ratio.
Importantly, we found no significant difference in EHS risk
between men and women. Previous research over a 22-year
period, using a similar US Army database found women had
an increased prevalence of EHS relative to men (13). However,
this earlier Army-wide investigation did not account for dif-
ferences in body size on analysis. In our present analysis that
was mutually adjusted for age, sex, and BMI, there was no
impact of sex on EHS risk, leaving only BMI and age as signifi-
cant predictors of EHS risk. This is in direct contrast with pre-
vious assertions that women are at an increased risk for EHS
compared with men of similar age and health status (15, 16).
Specifically, our data indicate that a woman has a similar risk
for EHS compared with a man of similar BMI.

Although BMI was significant in this model, it is unclear
whether the impact relies more on physical characteristics of
body size (BSA, BSA:mass) or body composition (muscle mass,
subcutaneous fat mass, etc.). Importantly, the cohort in this
analysis was US military personnel. We do not have body
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Figure 2. Relationship between BMI and probability of developing EHS.
Density bar on the top of the graph represents the EHS group. Density bar
on the bottom represents control group. Data from n = 5,035 (n = 445
women) analyzed using a logistic regression. BMI, body mass index; EHS,
exertional heat stroke.
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Figure 3. Distribution of BMI between EHS group and matched controls. O
(blue bars) denotes control group, 1 (red bars) denotes EHS group. Data
from n = 5,035 (n = 445 women). BMI, body mass index; EHS, exertional
heat stroke.

composition data on these subjects, so it is unclear if those
with elevated BMI were actually overweight or obese or if they
had higher muscle mass. Fitness status is also an important
consideration that was not evaluated in this model, although
previous investigations show limited impact of aerobic fitness
on thermoregulation independent of other physical factors (17)
or independent of possible adaptation to the heat (18). US mili-
tary personnel undergo routine physical training and thus are
possibly more fit than the average population; however, a com-
parison between soldiers and those of the general population
with similar BMI scores was not conducted in this analysis.

Although not directly analyzed in this investigation, BSA-
to-mass ratio (BSA:mass) is an important factor for the bio-
physics of heat exchange as heat is produced from body
mass (largely skeletal muscles) and dissipated from the skin
(surface area) (8). If more heat is being produced than can be
dissipated (i.e., from lower BSA:mass), in certain environ-
mental conditions like hot dry environments, more heat will
be stored. This is consistent with previous investigations
showing smaller individuals (with larger BSA:mass) have an
“advantage” over larger individuals with a lower BSA:mass
(19, 20). Howevet, this is inconsistent with previous findings
on the influence of body size in thermoregulation (21, 22),
and a previous investigation found no differences in thermo-
regulatory function in individuals with drastically different
BSA:mass, suggesting a possible influence of body mass as a
whole, rather than an influence of BSA:mass (23). Thus,
more research directly assessing the possible influence of
BSA:mass on EHS risk is warranted.

Body composition is another factor that may influence
thermoregulation and can be associated with BMI. Although
the Army population in this study was relatively young,
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healthy, and fit, it is possible that increased body fat percent-
age was present in the individuals with higher BMI. Increased
body fat percentage is often suggested as a means of increas-
ing heat storage during exercise in the heat. In this context,
recent, available evidence suggests that any possible effect of
increased subcutaneous or visceral body fat on increasing
heat storage is negligible (24). The influence of fat mass has
long been thought to be related to increased insulation from
subcutaneous fat. Interestingly, recent data suggest that it is
not an insulative effect, but rather an effect of differences in
specific heat of body tissues that may cause differences in
heat storage in people with different amounts of fat mass (25).

Over the past several decades, work from our laboratory
(26-29) and others (30-34) has shown that thermoregulatory
mechanisms are similar in men and women. Although there
are distinct influences of female reproductive hormones on
mechanisms of cutaneous vasodilation and sweating (35—
37), these do not appear to influence the overall ability to dis-
sipate heat or to maintain body temperature during exercise
in a hot environment. The only exception to this appears to
be in very hot, dry environments at very high exercise loads
(very unusual situations not often encountered), where
women may exhibit slightly lower heat dissipation via sweat-
ing (38, 39). Nonetheless, there is a persistent idea in some
areas of the literature that women are somehow at a “disad-
vantage” when it comes to thermoregulation in the heat (13,
40). The present analysis of almost 8,000 data points does
not show any significant differences in the risk of EHS
between men and women. Therefore, we believe statements
within the scientific literature that women are at a disad-
vantage in the heat are unwarranted and contradicted by the
best scientific evidence available at this time.

Somewhat unexpectedly in the present analysis, age was a
significant predictor of EHS risk, with younger individuals
demonstrating a higher risk for EHS. At first glance, this
appears to contrast with the well-established dogma that
increasing age is associated with increased risk of heat stroke
(4, 5, 41-43). However, based on the population studied, we
interpret these data from a behavioral perspective, rather
than a biological effect of age per se, in two main ways. First,
the higher-risk events (ruck marches, timed runs) are more
likely to be completed by soldiers of a younger age and/or
lower rank. Second, older soldiers (more likely to be officers
or senior enlisted, since age and rank are positively corre-
lated) have likely developed better behaviors and/or strat-
egies that prevent EHS. Third, there is the possibility the
results were affected by collider bias wherein those at high
risk for EHS are less likely to have long careers in the Army
thereby producing a misleading effect of age-reducing EHS
risk (44). Thus, we do not feel the significant age predictor is
reflective of an underlying physiological effect. It is clear
that heat tolerance decreases with age (e.g., reduced sweat
gland function with age), and we do not feel our findings
contradict that evidence (4, 45).

A major strength of the present study was the large sample
size (US Army population), but such population-based analy-
ses also come with inherent limitations. Although a useful
approximation, BMI is not a very accurate indicator of body
size or body composition. In future work, additional meas-
ures of body size and/or composition would be beneficial in
determining the contributing factors within BMI as it relates

to EHS. In particular, BSA:mass may be a more useful tool
for estimating EHS risk and is worth investigating further.
We also were not able to obtain information related to fitness
status of the individuals in each group. Across such a large
group, and in particular a military cohort, fitness status
would likely be linked to increased muscle mass and possibly
to decreased body fatness, which can still lead to increased
BMI. However, these additional analyses were not possible
in the present study.

Perspectives and Significance

In summary, we demonstrate in the present analysis that
across the active-duty US Army soldiers, BMI was a signifi-
cant predictor of EHS risk, whereas biological sex was not.
Within our relatively young, healthy group of soldiers, age
was a negative predictor, likely based on behavioral and ac-
tivity-related factors rather than biological age per se. These
findings lead to important follow-up questions regarding
specific contributors to risk including body size and body
composition, which will be important areas for future work.
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